Unlike a fuel tank that has a known volumetric dimension

May 31 [Fri], 2013, 12:40
Many perceive a battery as being an energy storage device that is similar to a fuel tank dispensing liquid fuel. For simplicity, a battery can be seen as such; however, measuring stored energy from an electrochemical device is far more complex. The process is fraught with confusion, is poorly understood, and this article 448007-001 laptop battery describes the challenges of measuring energy from a battery.

Before looking into the fuel gauge concept deeper, we assume that state-of-charge (SoC) is the relative stored energy in a battery that can be released under prevailing conditions. The prevailing conditions are mostly unknown to the battery user, and besides SoC they include the actual battery capacity, load currents and operating temperature. State-of-function (SoF), the all-encompassing criteria that includes SoC, capacity and delivery, is difficult to measure and remains mostly guesswork. Considering these limitations, one can appreciate why most battery fuel gauges are inaccurate.

Unlike a fuel tank that has a known volumetric dimension, the fuel gauge of a battery has unconfirmed definitions. Other than the open circuit voltage (OCV), which only approximates SoC, a battery does not have fundamental internal parameters that relate to SoC. The Ah rating, which the manufacturer specifies, only applies for the short time when the battery is new. In essence, a battery is a shrinking vessel that takes less energy with each subsequent charge, and the stated Ah rating is only a reference of what the battery should be holding. The battery is not an energy container per se that guarantees a given amount of energy under all conditions but exhibits a human quality delivering on prevailing situations.

A common error in fuel gauge design is ignoring the aging aspect by assuming that the battery will stay perfect. Such oversight will limit the service to about two years before the readings become inaccurate. The scaling of most fuel gauges is analogous to liquid fuel: full charge indicates 100% and empty is zero percent. Zero is the point when the battery reaches the low voltage knee at the end of discharge.

Discharging a battery rated at 1Ah should provide a current of 1A for one hour. This only holds true while the battery is new and discharged at room temperature. If the capacity shrinks to 50%, the fuel gauge of a fully charged battery will still show 100% but the expected one-hour runtime is reduced to 30 minutes. Running the battery below freezing reduces the time further. For the casual cellphone or laptop user, this error only causes inconvenience; however, the problem becomes more evident with electric vehicles and other critical battery operated devices that depend on the remaining runtime to reach the destination.


Modern fuel gauges adapt to prevailing conditions by “learning” how much energy the battery was able to deliver on the previous discharge. Learning, or trending, may also include charge time because a faded 590543-001 laptop battery charges quicker than a good one. It is also common to measure the internal battery resistance by observing the voltage drop; however, capacity estimation based on raising resistance no longer works well because the modern Li-ion maintains low resistance through most of its service life.

Capacity is best measured by discharging a fully charged battery at a constant current and reading the elapsed time. Most rechargeable batteries for portable use are specified at 1C discharge. A battery rated at 1Ah would therefore discharge at 1A. The rated discharge of primary cells, such as alkaline, is much lower. Measuring battery capacity by discharge/charge is impractical and stresses the battery.

The accuracy will likely drop further with use

May 31 [Fri], 2013, 12:35
Measuring stored energy in an electrochemical device, such as a battery, is complex and state-of-charge (SoC) readings on a fuel gauge provide only a rough estimate. Users often compare battery SoC with the fuel gauge of a vehicle. Calculating fluid in a tank is simple because a liquid is a tangible entity; HSTNN-Q34C laptop batterystate-of-charge is not. Nor can the energy stored in a battery be quantified becauseprevailing conditions such as load current and operating temperature influence its release. A battery works best when warm; performance suffers when it is cold. In addition, a battery loses capacity through aging.

Current fuel gauge technologies are fraught with limitations and this came to light when users of the new iPad assumed that a 100 percent charge on the fuel gauge should also relate to a fully charged battery. This is not always so and users complained that the battery was only at 90 percent.

The modern fuel gauge used in iPads, smartphones and laptops read SoC through coulomb counting and voltage comparison. The complexity lies in managing these variables when the battery is in use. Applying a charge or discharge acts like a rubber band, pulling the voltage up or down, making a calculated SoC reading meaningless. In open circuit condition, as is the case when measuring a naked battery, a voltage reference may be used; however temperature and battery age will affect the reading. The open terminal voltage as a SoC reference is only reliable when including these environmental conditions and allowing the battery to rest for a few hours before the measurement.

In the case of the iPad, a 10 percent discrepancy between fuel gauge and true battery SoC is acceptable for consumer products. The accuracy will likely drop further with use, and depending on the effectiveness of a self-learning algorithm, battery aging can add another 20-30 percent to the error. By this time the user has gotten used to the quirks of the device and the oddity is mostly forgotten or accepted. While differences in the runtime cause only a mild inconvenience to a casual user, industrial applications, such as the electric powertrain in an electric vehicle, will need a HSTNN-C17C laptop battery better system. Improvements are in the work, and these developments may one day also benefit consumer products.

Coulomb counting is the heart of today’s fuel gauge. The theory goes back 250 years when Charles-Augustin de Coulomb first established the “Coulomb Rule.” It works on the principle of measuring in-and-out flowing currents. Coulomb counting also produces errors; the outflowing energy is always less than what goes in. Inefficiencies in charge acceptance, especially towards the end of charge, tracking errors, as well as losses during discharge and self-discharge while in storage contribute to this. Self-learning and periodic calibrations through a full charge/discharge assure an accuracy most can live with.

Li-ion has a higher voltage compared to nickel-based batteries

April 05 [Fri], 2013, 12:05

Research of nickel-metal-hydride started in 1967; however, instabilities with the metal-hydride led scientists to develop the nickel-hydrogen 12 cells 42T5263 (NiH) instead. Today, NiH is mainly used in satellites.

New hydride alloys discovered in the 1980s offered better stability and the development of NiMH advanced in earnest. Today, NiMH provides 40 percent higher specific energy than a standard NiCd, but the decisive advantage is the absence of toxic metals.

The advancements of NiMH are impressive. Since 1991, the specific energy has doubled and the life span extended. The hype of lithium-ion may have dampened the enthusiasm for NiMH a bit but not to the point to turn HEV makers away from this proven technology. Batteries for the electric powertrain in vehicles must meet some of the most demanding challenges, and NiMH has two major advantages over Li-ion here. These are price and safety. Makers of hybrid vehicles claim that NiMH costs one-third of an equivalent Li-ion system, and the relaxation on safety provisions contribute in part to this price reduction.

Nickel-metal-hydride is not without drawbacks. For one, it has a lower specific energy than Li-ion, and this is especially true with NiMH for the electric powertrain. The reader should be reminded that NiMH and Li-ion with high energy densities are reserved for consumer products; they would not be robust enough for the hybrid and electric vehicles. NiMH and Li-ion for the electric powertrain have roughly one-third less capacity than consumer batteries.

NiMH also has high self-discharge and loses about 20 percent of its capacity within the first 24 hours, and 10 percent per month thereafter. Modifying the hydride materials lowers the self-discharge and reduces corrosion of the alloy, but this decreases the specific energy. Batteries for the electric powertrain make use of this modification to achieve the needed robustness and life span.12 cells 51J0497

There are strong opinions and preferences between battery chemistries, and some experts say that NiMH will serve as an interim solution to the more promising lithium systems. There are many hurdles surrounding Li-ion also and these are cost and safety. Li-ion cells are not offered to the public in AA, AAA and other popular sizes in part because of safety. Even if they were made available, Li-ion has a higher voltage compared to nickel-based batteries.

Manufacturers recommend halting charge if the battery

April 05 [Fri], 2013, 12:04
AGM technology was developed in 1985 for military aircraft to reduce weight, increase power handling and improve reliability. The acid is absorbed by a very fine fiberglass mat, making the battery spill-proof. This enables 12 cells L08S6D13shipment without hazardous material restrictions. The plates can be made flat to resemble a standard flooded lead acid pack in a rectangular case; they can also be wound into a cylindrical cell.

AGM has very low internal resistance, is capable to deliver high currents on demand and offers a relatively long service life, even when deep-cycled. AGM is maintenance free, provides good electrical reliability and is lighter than the flooded lead acid type. It stands up well to low temperatures and has a low self-discharge. The leading advantages are a charge that is up to five times faster than the flooded version, and the ability to deep cycle. AGM offers a depth-of-discharge of 80 percent; the flooded, on the other hand, is specified at 50 percent DoD to attain the same cycle life. The negatives are slightly lower specific energy and higher manufacturing costs that the flooded. AGM has a sweet spot in midsize packs from 30 to 100Ah and is less suitable for large UPS system.

AGM batteries are commonly built to size and are found in high-end vehicles to run power-hungry accessories such as heated seats, steering wheels, mirrors and windshields. NASCAR and other auto racing leagues choose AGM products because they are vibration resistant. AGM is the preferred battery for upscale motorcycles. Being sealed, AGM reduces acid spilling in an accident, lowers the weight for the same performance and allows installation at odd angles. Because of good performance at cold temperatures, AGM batteries are also used for marine, motor home and robotic applications.

Ever since Cadillac introduced the electric starter motor in 1912, lead acid became the natural choice to crank the engine. The classic flooded type is, however, not robust enough for the start-stop function and most batteries in a micro-hybrid car are AGM. Repeated cycling of a regular flooded type causes a sharp capacity fade after two years of use. See Heat, Loading and Battery Life.

As with all gelled and sealed units, AGM batteries are sensitive to overcharging. These batteries can be charged to 2.40V/cell (and higher) without problem; however, the float charge should be reduced to between 2.25 and 2.30V/cell (summer temperatures may require lower voltages). Automotive charging systems for flooded lead acid often have a fixed float voltage setting of 14.40V (2.40V/cell), and a direct replacement with a sealed unit could spell trouble by exposing the battery to undue12 cells L09S6Y02 overcharge on a long drive. See Charging Lead Acid.

AGM and other sealed batteries do not like heat and should be installed away from the engine compartment. Manufacturers recommend halting charge if the battery core reaches 49°C (120°F). While regular lead acid batteries need a topping charge every six months to prevent the buildup of sulfation, AGM batteries are less prone to this and can sit in storage for longer before a charge becomes necessary. Table 1 spells out the advantages and limitations of AGM.

Lithium is the lightest metal

January 31 [Thu], 2013, 16:26
Panasonic Batteries has its new Digital Xtreme Power batteries with oxyride technology, designed to last twice as long as regular alkaline batteries, according to the company. They utilize a combination of newly developed Panasonic Batteries has its new Digital Xtreme Power batteries with oxyride technology, designed 11.1v 5200mah 9cells UM09A41to last twice as long as regular alkaline batteries, according to the company. TheyPanasonic Batteries has its new Digital Xtreme Power batteries with oxyride technology, designed to last twice as long as regular alkaline batteries, according to the company.

They utilize a combination of newly developed materials for the cathode (plus side): Oxy Nickel Hydroxide and new technologically developed manganese dioxide and graphite. According to Panasonic, that means the batteries will yield three times as many snapshots with a digital camera, with a shorter flash recovery time.
Trends

Battery Council International recently completed part of an ongoing project to determine the trends of battery development (among other things) and how manufacturers will adapt. There are a few interesting items to note from their research:

The North American volume will continue to decline due to longer life batteries.
Auto accessories will increase battery power needs.

Government regulations and restrictions will become more stringent
Lead-acid batteries will lose share in the car industry due to increased use of Lithium and Nickel batteries
Market demand for rechargeable batteries will increase
Various forms of lithium batteries are emerging on the market. Although there are concerns about their flammability, many manufacturers are pushing industry standards by pre-qualifying these battery makers. The reason for this trend is simple - lithium is the lightest metal, which results in a high specific charge. For example, it takes 3.85g of lead to produce 1 amp for 1 hour while it only takes 0.26 grams of lithium to produce the same. One type of lithium battery is only 2.5mm. Lithium also produces a higher voltage and therefore, a higher energy density. Lithium is also more eco-friendly than lead or cadmium. These characteristics seem to fit right in line with market trends and many electronics manufacturers have noticed.
utilize a combination of newly developed materials for the cathode (plus side): Oxy Nickel Hydroxide and new technologically developed manganese dioxide and graphite. According to Panasonic, that means the batteries will yield three times as many snapshots with a digital camera, with a shorter flash recovery time.
Trends

Battery Council International recently completed part of an ongoing project to determine the trends of battery development (among other things) and how manufacturers will adapt. There are a few interesting items to note from their research:

The North American volume will continue to decline due to longer life batteries.
Auto accessories will increase battery power needs.

Government regulations and restrictions will become more stringent
Lead-acid batteries will lose share in the car industry due to increased use of Lithium and Nickel batteries
Market demand for rechargeable batteries will increase
Various forms of lithium batteries are emerging on the market. Although there are concerns about their flammability, many manufacturers are pushing industry standards by pre-qualifying these battery makers. The reason for this trend is simple - lithium is the lightest metal, which results in a high specific charge. For example, it takes 3.85g of lead to produce 1 amp for 1 hour while it only takes 0.26 grams of lithium to produce the same. One type of lithium battery is only 2.5mm. Lithium also produces a higher voltage and therefore, a higher energy density. Lithium is also more eco-friendly than lead or cadmium. These characteristics seem to fit right in line with market trends and many electronics manufacturers have noticed.
materials for the cathode (plus side): Oxy Nickel Hydroxide and new technologically developed manganese dioxide and graphite. According to Panasonic, that means the batteries will yield three times as many snapshots with a digital camera, with a shorter flash recovery time.
Trends

Battery Council International recently completed part of an ongoing project to determine the trends of battery development (among other things) and how manufacturers will adapt. There are a few interesting items to note from their research:

The North American volume will continue to decline due to longer life batteries.
Auto accessories will increase battery power needs.

Government regulations and restrictions will become more stringent
Lead-acid batteries will lose share in the car industry due to increased use of Lithium and Nickel batteries

Market demand for rechargeable batteries will increase
Various forms of lithium batteries are emerging on the market. Although there are concerns about their flammability, many manufacturers are pushing industry standards by pre-qualifying these battery makers.

The reason for this trend is simple - lithium is the lightest metal, which results in a high specific charge. For example, it takes 3.85g of lead to produce 1 amp for 1 hour while it only takes 0.26 grams of lithium to produce the11.1v 5200mah 9cells UM09A75 same. One type of lithium battery is only 2.5mm. Lithium also produces a higher voltage and therefore, a higher energy density. Lithium is also more eco-friendly than lead or cadmium. These characteristics seem to fit right in line with market trends and many electronics manufacturers have noticed.

Electric vehicles may be charged using energy produced

January 31 [Thu], 2013, 16:25
The automobile manufacturers realize that the time to develop an electric automobile is now. Ecological pressure is on to move away from hydrocarbon-fueled vehicles including bio-diesel and methanol derived from the 11.1v 5200mah 9cells AS10D61fermentation of grain or bio mass. Although the latter fuels may be considered renewable resources, they still produce carbon dioxide when burned, contributing to global warming.

Electric vehicles may be charged using energy produced by hydro-electric and wind power or other sources of non-polluting electricity such as thermal power and wave and tidal power from the oceans.

In searching for the best batteries to store energy to drive these vehicles, car makers want to provide a long range of operation between recharges. The goal is to store many kilowatt-hours of energy in the smallest, lightest, and least costly package.It is necessary to store about 35 kilowatt hours in a battery to drive a small car for more than 100 miles. Lithium-ion batteries have been chosen by most auto makers for their vehicles, except in the case of hybrid vehicles, where there is an11.1v 5200mah 9cells AS10D61 internal combustion engine to supply long distance driving energy.

In hybrid vehicles such as those made by Hyundai Motors, a smaller lithium polymer battery supplies about 1.5 kilowatt-hours, sufficient to drive the car for only a limited number of miles, but it is backed up by an efficient 2.4-liter gasoline engine. The Hyundai Sonata hybrid was announced at the 2008 Los Angeles Auto Show in November, 2008.

For eight months CalBattery has been working with Argonne National Laboratory

December 20 [Thu], 2012, 15:07
Start Up America’s Next Top Energy Innovator challenge, has announced the record-setting performance of its new “GEN3” silicon graphene composite anode material for lithium-ion batteries (LIBs). Independent test resu Brand new Presario C700 batterylts in full cell LIBs indicate the new GEN3 anode material, used with advanced cathode and electrolyte materials, increases energy density by 3 times and specific anode capacity by 4 times over existing LIBs.

For eight months CalBattery has been working with Argonne National Laboratory (ANL) to commercialize a novel lithium battery anode material for use with advanced cathode and electrolyte materials to achieve new levels of LIB performance. The work is showing extraordinary results. Independent full cell tests reveal unrivaled performance characteristics, with an energy density of 525WH/Kg and specific anode capacity 1,250mAh/g.

In contrast, most commercial LIBs have an energy density of between 100-180WH/kg and a specific anode capacity of 325mAh/g. “This equates to more than a 300% improvement in LIB capacity and an estimated 70% reduction in lifetime cost for batteries used in consumer electronics, EVs, and grid-scale energy storage,” said CalBattery CEO Phil Roberts.

The key to this new GEN3 battery material is the use of a breakthrough Argonne silicon graphene process which stabilizes the use of silicon in a lithium battery anode. Although Silicon absorbs lithium ten times better than any other anode materials it rapidly deteriorates during charge/discharge cycles. CalBattery has worked at Argonne and other facilities over the past year to develop this new anode material to work in a full LIB cell with multiple cathode and electrolyte materials.

The superior results of the development program at ANL leads the Company to believe that this advanced anode material could eventually replace conventional graphite based anode materials used in most LIBs manufactured today. This novel composite anode material is suitable for use in combination with a variety of existing and new LIB cathode and electrolyte materials that will help dramatically improve overall battery performance and lower LIB cycle cost - effectively storing electricity at a cost competitive with energy produced from fossil fuels.

CalBattery is now in the process of fast-tracking the commercialization of its GEN3 breakthrough battery anode material.

Over the next two years the Company plans: (1) to produce and sell its si-graphene anode material to global battery and EV OEMs, and (2) U.S. production of a limited quantity of specialized batteries for high-end applications. “We believe that our new advanced silicon graphene anode composite material is so good in terms of specific capacity and extended cycle life that it will become compatible Presario CQ40 battery a graphite anode ‘drop-in’ replacement material for anodes in most lithium ion batteries over the next 2-3 years,” said Roberts.

The Company believes this transformational technology will change the way LIB power is produced, managed, and stored, especially if it can lead to LIBs being produced for under $175/kWh and directly compete with the cost of energy from fossil fueled power generation.

Stricter regulations on shipping methods than for other cell chemistries

December 20 [Thu], 2012, 15:05
For high power applications which require large high cost batteries the price premium of Lithium batteries over the older Lead Acid OEM XPS 17 battery becomes a significant factor, impeding widespread acceptance of the technology. This in turn has discouraged investment in high volume production facilities keeping prices high and has for some time discouraged take up of the new technology. This is gradually changing and Lithium is also becoming cost competitive for high power applications.

Stability of the chemicals has been a concern in the past. Because Lithium is more chemically reactive special safety precautions are needed to prevent physical or electrical abuse and to maintain the cell within its design operating limits. Lithium polymer cells with their solid electrolyte overcome some of these problems.

Stricter regulations on shipping methods than for other cell chemistries.
Degrades at high temperatures.
Capacity loss or thermal runaway when overcharged.
Degradation when discharged below 2 Volts.
Venting and possible thermal runaway when crushed.
Need for protective circuitry.

Measurement of the state of charge of the cell is more complex than for most common cell chemistries. The state of charge is normally extrapolated from a simple measurement of the cell voltage, but the flat discharge characteristic of lithium cells, so desirable for applications, renders it unsuitable as a measure of the state of charge and other more costly techniques such as coulomb counting have to be employed.

Although Lithium cell technology has been used in low power applications for some time now, there is still not a lot of field data available about long term performance in high power applications. Reliability predictions based on accelerated life testing however shows that the cycle life matches or exceedsbuy Presario A900 battery that of the most common technologies currently in use.

These drawbacks are far out weighed by the advantages of Lithium cells and are now being used in an ever widening range of applications.

Cost savings are realized if the batteries

November 14 [Wed], 2012, 16:52
The reusable alkaline was introduced in 1992 as an alternative to disposable batteries. The battery was promoted as a low-cost power source for consumer goods. Attempts were made to open markets for wireless communications, medical and defense. But the big breakthrough never came. Today, the reusable alkaline occupies only a small market and its use is limited to portable entertainment devices 11.1v 5200mah 9cells VGP-BPS13A/Q and flashlights. The lack of market appeal is regrettable when considering the environmental benefit of having to discard fewer batteries. It is said that the manufacturing cost of the reusable alkaline is only marginally higher than the primary cell.

The idea of recharging alkaline batteries is not new. Although not endorsed by manufacturers, ordinary alkaline batteries have been recharged in households for many years. Recharging these batteries is only effective, however, if the cells have been discharged to less than 50% of their total capacity. The number of recharges depends solely on the depth of discharge and is limited to a few cycles at best. With each recharge, the amount of capacity the cell can hold is reduced. There is a cautionary advisory. Charging ordinary alkaline batteries may generate hydrogen gas, which can lead to explosion. It is not prudent to charge ordinary alkaline unsupervised.

The reusable alkaline is designed for repeated recharge. Also here,, there is a loss of charge acceptance with each recharge. The longevity of the reusable alkaline is a direct function of the depth of discharge; the deeper the discharge, the fewer cycles the battery can endure.

Tests performed by Cadex on 'AA' reusable alkaline cells showed a high capacity reading on the first discharge. In fact, the energy density was similar to that of nickel-metal-hydride. After the battery was fully discharged and recharged using the manufacturer's charger, the reusable alkaline settled at 60%, a capacity slightly below that of nickel-cadmium. Repeat cycling in the same manner resulted in a fractional capacity loss with each cycle. The discharge current in the tests was adjusted to 200mA (0.2 C-rate, or one fifth of the rated capacity); the end-of-discharge threshold was set to 1V/cell.

An additional limitation of the reusable alkaline system is its high internal resistance, resulting in a load current capability of only 400mA (lower than 400mA provides better results). Although adequate for portable radios receivers, CD players, tape players and flashlights, 400mA is insufficient to power most mobile phones and video cameras.

The reusable alkaline is inexpensive to buy but the cost per cycle is high when compared to other rechargeable batteries. Whereas nickel-cadmium checks in at $0.04US per cycle based on 1500 cycles, the reusable alkaline costs $0.50 based on 10 full discharge cycles. For many applications, this seemingly high cost is still economical when compared to primary alkaline that provides a one-time use. By only partially discharging the reusable alkaline, an improved cycle life is possible. At 50% depth of discharge, 50 cycles can be expected.

To compare the operating cost between the standard and reusable alkaline, a study was done on flashlight batteries for hospital use. The reusable alkaline achieved measurable cost savings in the low?intensity care unit in which the flashlights were used only occasionally. The high-intensity care unit, which used the flashlights constantly, did not attain the same result. Deeper discharge and more frequent recharge reduced the service life and offset any cost advantage over the standard replacement VGP-BPS13A/Salkaline battery.

When considering reusable alkaline, one must realize that the initial energy is slightly lower than that of the standard alkaline. Each subsequent recharge/charge cycle causes the capacity to decrease. Cost savings are realized if the batteries are never fully discharged but have a change to be recharged often.

The safety precaution is especially critical on larger batteries

November 14 [Wed], 2012, 16:50
A major concern arises if static electricity or a faulty charger has destroyed the battery's protection circuit. Such damage can permanently fuse the solid-state switches in an ON position without the user knowing. A battery for VGP-BPS13/Qwith a faulty protection circuit may function normally but does not provide protection against abuse.

Another safety issue is cold temperature charging. Consumer grade lithium-ion batteries cannot be charged below 0°C (32°F). Although the packs appear to be charging normally, plating of metallic lithium occurs on the anode while on a sub-freezing charge. The plating is permanent and cannot be removed. If done repeatedly, such damage can compromise the safety of the pack. The battery will become more vulnerable to failure if subjected to impact, crush or high rate charging.

Asia produces many non-brand replacement batteries that are popular with cell phone users because of low price. Many of these batteries don't provide the same high safety standard as the main brand equivalent. A wise shopper spends a little more and replaces the battery with an approved model. Figure 1 shows a cell phone that was destroyed while charging in a car. The owner believes that a no-name pack caused the destruction.

To prevent the infiltration of unsafe packs on the market, most manufacturers sell lithium-ion cells only to approved battery pack assemblers. The inclusion of an approved safety circuit is part of the purchasing requirement. This makes it difficult for a hobbyist to purchase single lithium-ion cells off-the-shelf in a store. The hobbyist will have no other choice than to revert to nickel-based batteries. I would caution against using an unidentified lithium-ion battery from an Asian source, if such cells is available.

The safety precaution is especially critical on larger batteries, such as laptop packs. The hazard is so much greater than on a small cell phone battery if something goes wrong. For this reason, many laptop manufacturers secure their batteries with a secret code that only the matching computer can access. This prevents non-brand-name batteries from flooding the market. The drawback is a higher price for the replacement battery. Readers of http://www.BatteryUniversity.com often ask me for a source of cheap laptop batteries. I have to disappoint the shoppers by directing them to the original vendor for a brand name pack.

Considering the number of lithium-ion bright VGP-BPS13A/Bused on the market, this energy storage system has caused little harm in terms of damage and personal injury. In spite of the good record, its safety is a hot topic that gets high media attention, even on a minor mishap. This caution is good for the consumer because we will be assured that this popular energy storage device is safe. After the recall of Dell and Apple laptop batteries, cell manufacturers will not only try packing more energy into the pack but will attempt to make it more bulletproof.